Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
3.
Ying Yong Sheng Tai Xue Bao ; 35(2): 399-406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523097

RESUMEN

Recognizing watershed runoff process and its component sources is a prerequisite for the rational use of water resources. To elucidate the effects and quantitative contributions of various vegetation types on the components of watershed runoff, we centered on the Caijiachuan main channel watershed in Jixian, Shanxi and five sub-watersheds with distinct vegetation types. By tracking the hydrological responses to two representative rainfall events and assessing the spatiotemporal variations in hydrogen and oxygen isotope signatures, we aimed to discern disparities in the runoff processes across these sub-watersheds and pinpoint their constituent origins. The results showed that under medium rainfall condition, the contribution rates of event water to the river flow of each watershed were in an order of protected forest (94.3%) > Caijiachuan main channel (83.1%) > agro-pastoral composite (64.3%) > plantation-secondary forest (52.4%) > cropland (0.3%) > secondary forest (0.0%); under light rainfall condition, plantation-secondary forest (52.4%) > protected forest (58.5%) > cropland (40.6%) > secondary forest (15.8%) > agro-pastoral composite (12.5%) > Caijiachuan main channel (9.3%). The event water contribution rate of secondary forest and protected forest watersheds to runoff was higher than that of plantation watersheds. The secondary forests watersheds had a stronger runoff storage capacity. The event water contribution rate of protected forest and agro-pastoral composite watersheds under medium rainfall intensity condition was greater than that under light rainfall intensity condition, while the event water contribution rate of cropland, plantation-secondary forest, and secondary forest watersheds was in adverse. The event water contribution to the runoff of forested watersheds was greater than that of cropland watersheds, which may be related to the presence of silt dams at the mouth of agricultural watershed channels. This study can provide a scientific basis for the analysis of water conservation and runoff change attribution in the loess area of west Shanxi.


Asunto(s)
Conservación de los Recursos Hídricos , Hidrógeno , Movimientos del Agua , Bosques , Conservación de los Recursos Hídricos/métodos , Agua
10.
Environ Sci Pollut Res Int ; 30(19): 56016-56036, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36907915

RESUMEN

One of the most serious challenges threatening agricultural sustainability in Nigeria is land degradation. Although this issue has received little attention, soil and water conservation practices have been identified as a possible pathway out of the potential problems posed by land degradation. Therefore, the central research question that this paper tries to address is the following: Do adoption of soil and water conservation (SWC) practices affect crop productivity and household welfare? This paper uses data collected by the International Institute of Tropical Agriculture (IITA) from maize farmers in rural Nigeria. We usedemploy the propensity score matching (PSM), inverse probability weighting adjusted regression model (IPWRA) approach, and the linear regression with endogenous treatment effect (LRETE) model to incorporate the typologies of SWC practices, and tested how the model affects crop productivity and household welfare. Additionally, multinomial logit was used to estimate the factors influencing the decision to adopt single and multiple SWC practices. The estimates show that education, age of the household head, access to credit, experience of drought, soil fertility, and occupational stress contribute to the decision to adopt SWC practices. The casual effect estimates reveal that both single and multiple adoptions of SWC practices had a positive and significant relationship with the crop productivity and welfare of the adopters. The results show that the adoption of combined SWC practices has a higher impact on crop productivity and welfare than single SWC practices. For instance, the adoption of a combination of three SWC practices was found to increase crop productivity and household welfare by 27.55% and 38.23%, respectively versus 13.91% and 15.11% in the case of single SWC practices. The study suggests that profile-raising agenda and efforts that focus on promoting the adoption of combination of SWC practices should be designed and implemented to enhance crop productivity and hence the welfare of the maize farming households in rural Nigeria.


Asunto(s)
Conservación de los Recursos Hídricos , Suelo , Humanos , Conservación de los Recursos Hídricos/métodos , Nigeria , Agricultura/métodos , Zea mays , Composición Familiar
16.
Nat Hum Behav ; 6(6): 858-867, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361909

RESUMEN

In this paper, we investigate two solutions to urban water security challenges: plumbing and nudging. Using anonymized monthly billing data from 1.5 million accounts in Singapore over ten years, our staggered difference-in-differences estimates show that a nationwide Home Improvement Programme that improves the efficiency of plumbing reduces residential water consumption by 3.5%. This effect persists over a decade and is robust across population subgroups. Efficiency improvements could enhance the efficacy of other conservation polices and mitigate the effects of excessive heat, rainfall and air pollution. The savings from efficiency improvements on utility bills are small, but the increase in housing value exceeds the private cost of the Home Improvement Programme. However, an evaluation of a nationwide peer-comparison nudging programme finds no evidence of reduced water consumption. Overall, we show that plumbing improvements generate long-lasting effects on water conservation.


Asunto(s)
Conservación de los Recursos Hídricos , Conservación de los Recursos Hídricos/métodos , Humanos , Ingeniería Sanitaria
17.
PLoS One ; 17(1): e0261651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995313

RESUMEN

A wide range of hydrological, ecological, environmental, and forensic science applications rely on predictive "isoscape" maps to provide estimates of the hydrogen or oxygen isotopic compositions of environmental water sources. Many water isoscapes have been developed, but few studies have produced isoscapes specifically representing groundwaters. None of these have represented distinct subsurface layers and isotopic variations across them. Here we compiled >6 million well completion records and >27,000 groundwater isotope datapoints to develop a space- and depth-explicit water isoscape for the contiguous United States. This 3-dimensional model shows that vertical isotopic heterogeneity in the subsurface is substantial in some parts of the country and that groundwater isotope delta values often differ from those of coincident precipitation or surface water resources; many of these patterns can be explained by established hydrological and hydrogeological mechanisms. We validate the groundwater isoscape against an independent data set of tap water values and show that the model accurately predicts tap water values in communities known to use groundwater resources. This new approach represents a foundation for further developments and the resulting isoscape should provide improved predictions of water isotope values in systems where groundwater is a known or potential water source.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Agua Subterránea/análisis , Recursos Hídricos/provisión & distribución , Monitoreo del Ambiente , Hidrógeno/análisis , Hidrología , Isótopos/análisis , Mapas como Asunto , Isótopos de Oxígeno/análisis , Estados Unidos , Agua/análisis , Abastecimiento de Agua
18.
Braz. j. biol ; 82: 1-13, 2022. map, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468561

RESUMEN

Today, most of the world’s population faces water scarcity, while global warming, urbanization, industrialization and population increases continue to increase the severity of the pressure on water resources. Management ofwater resources plays a key role in the sustainability of agricultural production. The water footprint (WF) is different in comparison to other water statistics because it takes direct and indirect water consumption into account, and helps in the management of water resources. Within this context, the WF of Van province, which is Turkey’s most easterly located arid region, was calculated from 2004 to 2019. The study area covers lake Van, which is Turkey's largest lake, and the Van basin with an area of 23.334km² and a population of 1.136.757 (2019). In the calculations, crop (WFcrop), livestock (WFlivestock), and domestic and industrial water footprints (WFdomestic+industrial) were evaluated separately, and blue and green water footprints (WFblue and WFgreen) were analyzed in detail. According to the results, the average WF of Van province was found to be 8.73 billionm3 year-¹. Throughout the province, 87.6% of the WF is composed of WFcrop, 4.9% is WFlivestock and 7.5% is WFdomestic+industrial. Of the WFcrop, 62.5% depends on WFblue, i.e., freshwater. Most of the WFlivestock consisted of dairy cattle (49%) and sheep (38%). The average WFdomestic+industrial for 2004 to 2019 was 0.64billion m³ year-¹. The average per capita water footprint of Van province was found to be 889.9m³ year-¹ capita-¹. In addition, the province is classified as severe water scarcity (257%). This study is one of the first province-based calculations of WF in Turkey and is the first study to bring a different aspect to published literature by including residual soil moisture from the winter months. As a result of this study, the WFblue of the [...].


Hoje, a maior parte da população mundial enfrenta a escassez de água, enquanto o aquecimento global, a urbanização, a industrialização e o crescimento da população continuam a aumentar a gravidade da pressão sobre os recursos hídricos. A gestão dos recursos hídricos desempenha papel fundamental na sustentabilidade da produção agrícola. A pegada hídrica (WF) é diferente em comparação com outras estatísticas hídricas porque leva em consideração o consumo direto e indireto de água e auxilia na gestão dos recursos hídricos. Nesse contexto, o WF da província de Van, que é a região árida localizada mais a leste da Turquia, foi calculado de 2004 a 2019. A área de estudo cobre o lago Van, que é o maior lago da Turquia, e a bacia de Van, com uma área de 23,334 km² e uma população de 1.136.757 (2019). Nos cálculos, as pegadas hídricas de safra (WFcrop), pecuária (WFlivestock) e doméstica e industrial (WFdomestic+industrial) foram avaliadas separadamente, e as pegadas hídricas azul e verde (WFblue e WFgreen) foram analisadas em detalhes. De acordo com os resultados, o WF médio da província de Van foi encontrado em 8,73 bilhões de m³ ano-¹. Em toda a província, 87,6% do WF são compostos por WFcrop, 4,9% são WFlivestock e 7,5% são WFdomestic+industrial. Do WFcrop, 62,5% dependem do WFblue, ou seja, de água doce. A maior parte do gado WFlivestock era composto por gado leiteiro (49%) e ovelhas (38%). O WFdomestic+industrial médio de 2004 a 2019 foi de 0,64 bilhão de m³ ano-¹. A pegada hídrica per capita média da província de Van foi encontrada em 889,9 m³ ano-¹ capita-¹. Além disso, a região é classificada como grave escassez de água (257%). Este estudo é um dos primeiros cálculos de WF baseados em províncias na Turquia e é o primeiro estudo a trazer um aspecto diferente para a literatura publicada, incluindo a umidade residual do solo dos meses de inverno. Como resultado deste estudo, o WFblue do WFcrop está [...].


Asunto(s)
Conservación de los Recursos Hídricos/estadística & datos numéricos , Conservación de los Recursos Hídricos/métodos , Recursos Hídricos/provisión & distribución
19.
PLoS One ; 16(11): e0260117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793576

RESUMEN

In hydrological modelling, a good result for the criterion of goodness of fit does not always imply that the hypothesis of mass conservation is fulfilled, and models can lose their essential physical soundness. We propose a way for detecting this anomaly by accounting the resulting water balance during model simulation and use it to modulate the obtained goodness of fit. We call this anomaly in water balance as "inner balance error of the model". To modulate the goodness of fit values, a penalty function that depends on this error is proposed. In addition, this penalty function is introduced into a multi-criteria objective function, which is also tested. This procedure was followed in modelling the Headwater of the Tagus River (Spain), applying the monthly abcd water balance model. Modulation of the goodness of fit allowed for detecting balance errors in the modelling, revealing that in the simulation of some catchments the model tends to accumulate water in, or release water from, the reservoir that simulates groundwater storage. Although the proposed multi-criteria objective function solves the inner balance error for most catchments, in some cases the error cannot be corrected, indicating that any error in the input and output data is probably related to groundwater flows.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Hidrología/métodos , Simulación por Computador , Conservación de los Recursos Hídricos/estadística & datos numéricos , Exactitud de los Datos , Agua Subterránea , Modelos Teóricos , Reproducibilidad de los Resultados , Ríos , Agua
20.
PLoS One ; 16(9): e0249643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492028

RESUMEN

The demand for water-energy (WE) should be addressed with their sustainable supply in the long-term planning. The total energy demand was estimated to be around 14,000000 and 53,000000 MWh for 2030 and 2050 years respectively. These years' predicted water demand was 0.4 and 0.7 billion-cubic-meter. Based on the estimated energy and water demand, sustainable supply through WE management were determined. In 2030 and 2050 the water supply-demand balance index is around 1, showed water demand will be met for respective years, whereas the energy supply-balance after the intervention become around 0.9 and 0.7. The study results clearly predicted future WE demand of Addis Ababa city and have been put their quantified supply suggestion.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Fuentes Generadoras de Energía , Abastecimiento de Agua , Ciudades , Etiopía , Humanos , Modelos Teóricos , Energía Renovable , Factores Socioeconómicos , Desarrollo Sostenible
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...